Modified Ni-based electro-catalysts for dry reforming of methane as potential electrodes for SOFCs

E. Ioannidou, S. Neophytides and D.K. Niakolas

Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICEHT), Stadiou Str., 26504 Platani, Patras

ABSTRACT

The presented study is related to modified Au-Mo-Fe-Ni/GDC electrodes, in the form of halfelectrolyte supported cells, for their performance and coking resistance under CO₂ reforming of CH₄ in single SOFCs, at 750-900 °C, through catalytic-kinetic measurements. Ni/GDC, 1 wt.% Au-Ni/GDC, 3 wt.% Au-Ni/GDC, 0.5 wt.% Fe-Ni/GDC, 2 wt.% Fe-Ni/GDC, 3 wt.% Au-0.4 wt.% Mo-Ni/GDC and 3 wt.% Au-0.5 wt.% Fe-Ni/GDC electrodes were tested at open circuit potential conditions to elucidate their catalytic activity towards the consumption of CH₄, CO₂, the production of H₂, H₂O, CO and the production of carbon, under a biogas fuel with CH₄/CO₂=1. The latter approach is considered as an attempt to create a reference profile for the catalytic performance of the candidate electrodes, by applying the same CH₄/CO₂ feed conditions as those under IDRM operational mode without applying a current. The catalytic-kinetic measurements were carried out for a cell with Ni/GDC, under differential conditions, at various CH₄ and CO₂ partial pressures. The samples were also physicochemically characterized including measurements for the catalytic dissociation of CH₄ and CO₂.

INTRODUCTION

Recycling biogas to produce syngas (H₂ + CO) through Dry Reforming of Methane (DRM) has currently attracted resurgent interest. Biogas consists mainly of CH₄ (50-70%) and CO₂ (25-50%) and is widely produced by anaerobic fermentation of biomass. DRM provides a feasible solution to eliminate greenhouse gases via production of useful chemicals and hydrocarbons.

Considering the DRM energy applications the produced syngas can be used as a fuel in high temperature solid oxide fuel cells (SOFCs) for electricity production or biogas can be directly fueled in the cell without the need of an external reformer (Internal Dry Reforming of Methane, IDRM), which simplifies the SOFC system and reduces the cost. When biogas is directly fed to the SOFC fuel electrode at temperatures 750-900 °C, various catalytic (Equations 1-3) and electrocatalytic reactions may take place simultaneously on the electrode [1,2].

$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$	$\Delta H_{200}^{0} = 247 \text{ kJ mol}^{-1}$	(1)
214 202 200 212		(-)

 $CO_2 + H_2 \leftrightarrow CO + H_2O$ $\Delta H_{298}^0 = 41 \text{ kJ mol}^{-1}$ (2)

$$CH_4 \leftrightarrow C + 2H_2 \qquad \qquad \Delta H_{298}^0 = 75 \text{ kJ mol}^{-1} \tag{3}$$

The CO₂ reforming of methane (DRM) (Equation 1) is a strongly endothermic process and therefore high temperatures (typically >750 °C) are required to achieve high H₂ and CO yields. Moreover, the catalytic Reverse Water Gas Shift (RWGS) reaction (Equation 2) may run in parallel, resulting in the consumption of valuable H₂ and a decrease in H₂/CO ratio to values lower than unity [2]. In addition, carbon deposition on the electrocatalyst surface due to CH₄ decomposition (Equation 3) may also occur resulting in progressive electrocatalyst deactivation. The CH₄ decomposition (Equation 3) is favoured at high temperatures (> 600 °C), whereas at temperatures below 650 °C carbon deposits are mainly produced by Boudouard reaction (2CO \rightarrow C + CO₂). The H₂, CO and C produced, as well as the CH₄ supplied can be electrochemically oxidized by oxygen ions [1].

Ni-based ceramic-metal composites with Yttria Stabilized Zirconia (YSZ) and Gadolinia Doped Ceria (GDC) are widely used as electrocatalysts in SOFCs because of their activity and inexpensiveness. According to the literature, Ni/GDC fuel electrodes show higher electrocatalytic activity for CH₄ reforming, resistance to carbon deposition, and tolerance levels for H₂S compared to Ni/YSZ electrodes [3]. Authors attributed this behaviour to the capacity of CeO₂ to store and release oxygen, which favours the CH₄ oxidation and mitigates the carbon deposition. The carbon tolerance

and anti-sintering tendency of nickel can be enhanced further, by dispersing trace amounts of transition noble (Rh, Pt, Pd, Ru, Au) or non-noble (Co, Cu, Mo, Fe) metal elements [3,4].

EXPERIMENTAL PART

The modified powders were prepared via Deposition-Co Precipitation (D.CP.) by using the commercial NiO/GDC cermet (65 wt.% NiO-35 wt.% GDC, Marion Technologies) as the support and HAuCl₄ (Sigma-Aldrich), (NH₄)₆Mo₇O₂₄ (Sigma-Aldrich) and Fe(NO₃)₃x9H₂O (Sigma-Aldrich) solutions as precursors [3,4]. The half cells consisted of circular shaped planar 8YSZ electrolyte (by Kerafol) with a 25 mm diameter and 300 μ m thickness. A paste was applied by screen-printing and comprised the electrocatalyst, terpineol (Sigma-Aldrich) and PVB (polyvinylbutyral, Sigma-Aldrich). After the deposition, the cell was sintered at 1150 °C. The loading of the examined electrodes varied in the region of 5–7 mg/cm² with a 1.8 cm² geometric surface area. The prepared half cells were adjusted on a ceramic YSZ tube.

The prepared half cells were catalytically investigated at OCP conditions for CO_2 reforming of CH₄, in the presence of Ni mesh. The catalytic experiments were accomplished at temperatures between 750– 900 °C under a fuel with CH₄/CO₂=1 and for total gas flows varying from 150 to 300 cm³/min. Reactants and products were determined by using an on-line gas chromatograph (Varian CP-3800) with a thermal conductivity detector.

RESULTS

Figure 1 shows the catalytic performance of each electrode at 750-900 °C, through the consumption rates of CH₄, CO₂ and the production rates of H₂, CO, H₂O and of the formed carbon, for the CO₂ reforming of CH₄ (CH₄/CO₂=50/50).

The measurements were performed on half cells that comprised only the electrocatalyst and the current collector (Ni mesh). Comparative measurements of Ni/GDC with and without the presence of Ni mesh, suggest that there is no direct catalytic contribution of Ni mesh to the activity of the electrocatalysts. In respect to the catalytic performance, Ni/GDC was found to be the most active electrode for the CO_2 reforming of CH₄ reaction, yielding the highest production rates of H₂ and CO. However, it exhibited carbon formation rates, which were calculated by using the measured production rates of H₂, CO and H₂O in the mass balance equation of carbon (Equation 4):

$$r_{\rm C} \left[\frac{\mu mol}{s} \right] = \frac{r_{\rm H_2} + 2r_{\rm H_2O} - r_{\rm CO}}{2} \tag{4}$$

On the other hand, 3Au-0.4Mo-Ni/GDC, 3Au-0.5Fe-Ni/GDC, 3Au-Ni/GDC and 0.5Fe-Ni/GDC electrodes were less active in terms of H₂ and CO production and at the same time exhibited resistivity to carbon deposition.

The kinetic measurements were performed with gas flows in the range of 150-200 cm³/min, where the reactor was operating under differential conditions with reactants' conversions between 5% and 20%. In the above gas flow range the reaction rates were found to remain practically constant, which corresponds to the absence of external mass transfer limitations. **Figure 2(A-C)** presents the Arrhenius plots for the production rates of CO, H₂ and H₂O under differential conditions and **Figure 2(D-F)** exhibit the derived apparent activation energies ($E_{a, app}$) for the production of CO, H₂ and H₂O for each electrocatalyst. The derived $E_{a, app}$ for the production of H₂O corresponds to the apparent activation energy for the RWGS reaction which consumes the valuable H₂ for the fuel cell. A proper electrocatalyst should exhibit (a) the lowest $E_{a, app}$ for H₂ and CO production, (b) the highest $E_{a, app}$ for H₂O production and (c) negligible carbon deposition rates. The Arrhenius plots, the calculated $E_{a, app}$ and the formation carbon rates (**Fig. 1**) show that 3Au-0.4Mo-Ni/GDC, 3Au-0.5Fe-Ni/GDC, 3Au-Ni/GDC and 0.5Fe-Ni/GDC have practically the highest $E_{a, app}$ for the RWGS reaction and exhibit high resistance to carbon formation, whereas they are less active for H₂ and CO production.

Figure 2. Arrhenius plots of (A) CO, (B) H_2 and (C) H_2O production rates (µmol $s^{-1}g^{-1}$) on ESCs. The reaction mixture comprised 50 vol.% CH₄ and 50 vol.% CO₂. The corresponding apparent activation energies ($E_{a, app}$, kJ/mol) for each sample for the (D) CO production, (E) H_2 production and (F) H_2O production are presented in the bar charts. Differential conditions.

The catalytic-kinetic measurements under various CH₄ and CO₂ partial pressures were carried out under differential conditions with gas flows between 150 and 200 cm³/min. The electrode was Ni/GDC with a loading of 2.5 mg/cm². The effect of CH₄ and CO₂ molar fractions on the catalytic rates of H₂, CO and H₂O formations at 750, 850 and 900 °C is shown in **Figure 3**.

Figure 3. Steady-state effect of (A),(B),(C): CH₄ molar fraction (y_{CH4}) under fixed CO₂ molar fraction ($y_{CO2}=0.506$) and (D),(E),(F): CO₂ molar fraction (y_{CO2}) under fixed CH₄ molar fraction ($y_{CH4}=0.498$) on the (A),(D) H₂ production rate, (B),(E) CO production rate and (C),(F) H₂O production rate under OCP conditions. ESC: Ni/GDC (2.5 mg/cm²). Differential conditions.

It is observed that the formation rates of H_2 and CO exhibit a positive order dependence either on y_{CH4} or on y_{CO2} at 850 and 900 °C. On the other hand, the formation rate of H_2O exhibits an initially positive and then zero order dependence on y_{CH4} , whereas the dependence of r_{H2O} on y_{CO2} is positive at the same temperatures (850 and 900 °C). At 750 °C the catalytic activity is inhibited towards the production of H_2 , CO and H_2O . In all cases, the CO formation is higher than H_2 formation due to the fact that CO is produced both through DRM (Equation 1) and RWGS (Equation 2) reactions. Additionally, under low y_{CO2} (<0.25) the production of H_2O through the RWGS reaction is negligible and as a result the produced CO is derived solely from DRM reaction. In the last case, in this region of y_{CO2} <0.25, the produced r_{H2} should be identical with the produced r_{CO} , which is confirmed (**Fig. 3D and E**).

CONCLUSIONS

Overall, the half cell catalytic measurements lead the investigation to the comparison of the electrocatalytic performance of Ni/GDC, 3Au-0.4Mo-Ni/GDC, 3Au-0.5Fe-Ni/GDC, 3Au-Ni/GDC and 0.5Fe-Ni/GDC. In this new series of investigation, the most active catalyst for the CO_2 reforming of CH₄ (Ni/GDC) that is also prone to carbon formation/deposition will be examined versus modified electrodes, which are less active for the main reactions (DRM and RWGS) but at the same time show negligible rates of carbon formation.

ACKNOWLEDGMENTS

This research has been co-financed by the European Union and Greek national funds through the operational program 'Regional Excellence' and the operational program 'Competitiveness, Entrepreneurship and Innovation', under the call "RESEARCH-CREATE-INNOVATE" (Project code: T2E Δ K-00955).

REFERENCES

[1] M.J. Escudero, J.L. Serrano, Int. J. Hydrogen En. 44, 36 (2019) 20616-20631.

[2] I.V. Yentekakis, P. Panagiotopoulou, G. Artemakis, Applied Cat. B.: Environ. 296 (2021) 120210.

[3] D.K. Niakolas, M. Athanasiou, V. Dracopoulos, et al, Appl. Cat. A.: Gen. 456 (2013) 223-232.

[4] Ch. Neofytidis, E. Ioannidou, M. Kollia, et al, Int. J. Energy Res. 44, 13 (2020) 10982-10995.