

XXXVII **Panhellenic Conference on** Solid State Physics & Materials Science 17-20 September 2023 Thessaloniki | Greece

Catalytic performance and stability of Ru on Ce-based Aminoclay carriers for Sabatier reaction

<u>A. Kaloudi¹</u>, C. Drosou², K. Spyrou¹, P. Zygouri¹, I. V. Yentekakis^{2,3}, D. P. Gournis^{1,2*}

¹Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece. ²School of Chemical & Environmental Engineering, Technical University of Crete, Chania, Greece. ³Institute of GeoEnergy, Foundation for Research and Technology-Hellas (FORTH/IG), Chania, GR.

Motivation

Carbon dioxide (CO₂) is a colorless, and odorless greenhouse gas (GHG) with a faint acid taste. Over the past years, CO₂ concentrations in atmosphere have increased by 30%. As a result, the global surface temperature increased from 0.4 to 0.8 °C. The catalytic hydrogenation of CO_2 to produce CH_4 , also known as Sabatier reaction ($CO_2 + 4H_2 \leftrightarrow$ $CH_4 + 2H_2O$; $\Delta H_0 = -164.7 \text{ kJ/mol}$) is considered an extremely important route for CO_2 recycling, with Ni and Ru are among the most active Sabatier catalysts. In this regard, cerium and lanthanum/cerium based synthetic Aminoclay analogues were prepared, using a green, facile, and cost-effective room-temperature sol-gel-based synthetic method, as carriers of Ru nanoparticles (Ru/CeAC, Ru/LaCeAC). The performance of this new class of catalysts was investigated under CO₂ hydrogenation conditions were found to be highly active and selective towards CH_4 production.

Wavenumber (cm⁻¹)

Design of Ru/CeAC and Ru/LaCeAC catalysts

Ruthenium was incorporated on Ce-based aminoclay supports using the conventional wet impregnation method. Appropriate amounts of Ce-based aminoclay were impregnated by specific volume of a Ruthenium (III) nitrosylnitrate solution to obtain a Ru loading of 3%. Then, pH was adjusted to a value of 6 by adding NH_3 solution. The slurry was dried under continuous stirring at 80 °C. The resulting material was further dried at 110 °C overnight and then was calcinated at 450 °C for 1 h.

 CO_2 conversion (X_{CO2}), CH₄ yield and selectivity (Y_{CH4} & S_{CH4}) for catalysts Ru/CeAC versus TOS (Time-on-stream, h). Experimental Conditions: 25% H₂, 5% CO₂ in balance with Ar, 1 atm, T (°C): 380 °C, $F_t = 19 \text{ cc/min}, m_{cat} = 60 \text{ mg}.$

The up to 70% CH_4 yield obtained reveals that synthetic Ce-based Aminoclays can be successfully used as supports for the design of efficient CO_2 methanation catalysts.