Support-induced effects on the Ir nanoparticles activity, selectivity and stability

performance under the CO, reforming of methane reaction
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Objectives situ oxidation with 50 cm?®/min flow of 20% O,/He at
1. Introduction 3 2

v’ Study the low temperature DRM performance on Ir- 650°C (protocol: “Aged@650”) followed by 2 h
based catalysts at differential reactor operation additional oxidation at 750°C (protocol: “Aged@750”)

« Dry (CO,) reforming of methane (DRM), toward conditions (i.e., kinetic regime-intrinsic activity). B. Materials characterization
syngas (Eg. 1) concerns (i) the simultaneous v" Evaluation of the role of Ir metal-support interactions, N, adsorption-desorption (BET-BJH method); isothermal
abatement of two key greenhouse gases (CO, and upon the use of supports with a variety of oxygen hydrogen chemisorption (H,-Chem.); inductively coupled
CH,), (i) provides the efficient direct biogas storage capacity (OSC) values on (a) the activity, (b)  plasma optical emission spectroscopy (ICP-OES); high
utilization and (i) gives opportunities for the selectivity, (c) the resistance to carbon deposition as  resolution transmission electron microscopy (HRTEM);
recycling of CO, emissions by natural gas. well as (d) on the stability under high-temperature  powder X-ray diffraction (PXRD), hydrogen temperature
oxidative aging of Ir nanoparticles. programmed reduction (H,-TPR); temperature

CH,+ CO, 5 2C0O + 2H,, AH g =247 k] mol (1) programmed oxidation (TPO).

* Syngas (CO+H,) Is a critical feedstock for the 2. EX per imental C. (a) Catalytic activity experiments

g;?ﬁvuecg'ﬁgufg eI:é’r gi‘l”;r:ﬁ?;f&a”d Fiscier-Tiepsen Catalysts preparation Experimental Conditions:  50%v/vCH,+50%v/v

CO,, w,=50mg, F;=100-200 cm3/min T=500-
750°C
(b) Time-on-stream (TOS) stability experiments

Supporting materials: y-Al,O, (commercial), ACZ (80
« DRM rank among the top issues of applied wt.% Al,05-20 wt.% Ce(52r;50,.5) & CZ (Ce;52r(50,.5)

catalysis in the light of environmental protection made by co-precipitation
’ , : | N : ; : : - itinne 0 0
renewable energy production and  circular Supported Ir catalysts: preparation of low iridium loading Experimental Conditions: 50 % v/v CH, + 52/0‘{/V
economy. (0.4-1.0% wt) catalysts by wet impregnation CO,, total pressure 1bar, F{=100 cm°/min,
Aged catalysts: Two consecutive aging protocols: 2h in (WGHSV=120,000 cm?/g,,h), T=750°C, 12 h.
3. Results
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room temperature to 800°C under a stream of 6.1% O, in He. mMass W, = 50 mg, WGHSV= 120 000 cm®/gg,-h 1 bar, m_,, = 50 mg, WGHSV= 120 000 cm3/g_,h.

4. Conclusions
v’ Independently of the support, Ir/y-Al,O;, IYACZ and Ir/CZ catalysts have a very stable time-on-stream DRM performance. However, supports with high
oxygen storage capacity (1.e. ACZ and CZ) further promote CO, consumption, yielding CO-enriched syngas.
v’ For all catalysts carbon deposition was low, although it is decreasing in the order Ir/y-Al,O,>Ir/ACZ>Ir/CZ that is consistent with a bifunctional mechanism
involving participation of oxygen vacancies on the surface of the support in CO, activation (CO, — CO + O) and carbon removal.
v" The lower apparent activation energy for CO, consumption rate, observed with CZ-containing catalysts (Ir/ACZ and Ir/CZ) suggests that CZ is a promising
support for use 1n low temperature DRM.
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