Support-induced effects on the Ir nanoparticles activity, selectivity and stability performance under the CO₂ reforming of methane reaction

Ioannis V. Yentekakis¹, Georgios Kyriakou², Richard M. Lambert³, Paraskevi Panagiotopoulou¹, Kalliopi Kousi⁴, Dimitris I. Kondarides², Grammatiki Goula¹

Laboratory of Physical Chemistry & Chemical Processes, School of Chemical & Environmental Engineering, Technical University of Crete, 73100 Chania, GR ² Dept. of Chemical Engineering, University of Patras, Greece, ³ Dept. of Chemistry, Cambridge University, Cambridge CB2 1EW, UK. ⁴School of Engineering Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Wewcastle University

1. Introduction

Dry (CO_2) reforming of methane (DRM), toward syngas (Eq. 1) concerns (i) the simultaneous abatement of two key greenhouse gases (CO₂ and CH_4), (ii) provides the efficient direct biogas utilization and (iii) gives opportunities for recycling of CO_2 emissions by natural gas.

 $CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2$, $\Delta H^{\circ}_{298} = 247 \text{ kJ mol}^{-1} (1)$

- Syngas $(CO+H_2)$ is a critical feedstock for the production of H₂, ammonia and Fischer-Tropsch derived liquid energy carriers.
- DRM rank among the top issues of applied • catalysis in the light of environmental protection, renewable production energy and circular economy.

Objectives

✓ Study the low temperature DRM performance on Irbased catalysts at differential reactor operation conditions (i.e., kinetic regime-intrinsic activity).

 \checkmark Evaluation of the role of Ir metal-support interactions, upon the use of supports with a variety of oxygen storage capacity (OSC) values on (a) the activity, (b) the selectivity, (c) the resistance to carbon deposition as well as (d) on the stability under high-temperature oxidative aging of Ir nanoparticles.

2. Experimental

A. Catalysts preparation

Supporting materials: γ -Al₂O₃ (commercial), ACZ (80) wt.% Al₂O₃-20 wt.% Ce_{0.5}Zr_{0.5}O_{2- δ}) & CZ (Ce_{0.5}Zr_{0.5}O_{2- δ}) made by co-precipitation

Supported Ir catalysts: preparation of low iridium loading (0.4-1.0% wt) catalysts by wet impregnation

Aged catalysts: Two consecutive aging protocols: 2h in

consumption rate (mol/g_{lr}s)

and CO₂

CH

0.01

(a)

situ oxidation with 50 cm³/min flow of 20% O₂/He at 650°C (protocol: "Aged@650") followed by 2 h additional oxidation at 750°C (protocol: "Aged@750")

B. Materials characterization

N₂ adsorption-desorption (BET-BJH method); isothermal hydrogen chemisorption (H₂-Chem.); inductively coupled plasma optical emission spectroscopy (ICP-OES); high resolution transmission electron microscopy (HRTEM); powder X-ray diffraction (PXRD), hydrogen temperature programmed reduction $(H_2-TPR);$ temperature programmed oxidation (TPO).

C. (a) Catalytic activity experiments

<u>Experimental</u> Conditions: $50\% v/vCH_4 + 50\% v/v$ CO₂, w_{cat} =50mg, F_{T} =100-200 cm³/min T=500-750°C

(b) Time-on-stream (TOS) stability experiments

Experimental Conditions: 50 % v/v $CH_4 + 50\% v/v$ CO₂, total pressure 1bar, $F_T = 100$ cm³/min, (wGHSV=120,000 cm³/ $g_{cat}h$), T=750°C, 12 h.

3. Results

Figure 1. H₂-TPR profiles of the γ -Al₂O₃, ACZ and CZ supports (a), and the counterpart Ir/γ -Al₂O₃, Ir/ACZ and Ir/CZ catalysts (b)

Figure 2 CH_4 and CO_2 consumption rates, and corresponding H_2/CO molar ratio yielded for fresh Ir/γ -Al₂O₃, Ir/ACZ and Ir/CZ catalysts vs time-on-stream at T =750 °C and equimolar feed composition $([CH_4]^{in} = [CO_2]^{in} = 50\%$ at a total pressure of 1 bar). Other conditions: $F_{t,in} = 100 \text{ cm}^3/\text{min}$; $w_{cat} = 50 \text{ mg}$. Open symbols & dashed lines: CH₄ consumption rates, filled symbols & solid lines: CO_2 consumption rates for Ir/γ -Al₂O₃ (triangles), Ir/ACZ (squares) and Ir/CZ (circles) catalysts

Figure 3. Temperature programmed oxidation profiles (CO_2) production versus temperature) of fresh Ir/y-Al2O3, Ir/ACZ and Ir/CZ catalysts after exposure to DRM reaction conditions (i.e., $[CO_2]=[CH_4]=50\%$ at 1 bar, $m_{cat} = 100$ mg, WGHSV = 60,000 cm³/g_{cat}·h, T=750 °C). Temperature ramp of TPO was 10°C/min from

1.08 1.00 1.04 1.12 1.16 1.20 1.24 1.0 0.8 ratio 0.6 0.4 0.2 0.0 1.00 1.04 1.12 1.16 1.20 1.24 1.08 1/T, (10⁻³ K⁻¹) Figure 4. Catalysts intrinsic activity in Arrhenius plots. (a): Temperature dependence of CH_4 (closed symbols) and CO_2 (open symbols) consumption rates, and (b): corresponding H_2/CO molar ratios, for fresh Ir/Al_2O_3 , Ir/ACZ & Ir/CZ catalysts. Experimental conditions: $[CH_4] = [CO_2] = 50$ % at a total pressure of 1 bar, catalyst mass $w_{cat} = 50$ mg, WGHSV= 120 000 cm³/g_{cat}·h

Ir/Al₂O₃ (triangles)

Ir/ACZ (squares)

Ir/CZ (circles)

Figure 5. The effect of consecutive oxidative thermal aging on DRM performance of Ir/γ -Al₂O₃, Ir/ACZ και Ir/CZ catalysts. Aging protocols: (i) Aged@650 (2 h in situ oxidation with 50 cm³/min flow of 20% O₂/He at 650°C); (ii) Aged@750 (consecutive 2 h additional in situ oxidation with 50 cm³/min flow of 20% O_2 /He at 750°C. DRM performance was evaluated at 750°C, equimolar feed composition $[CH_4]=[CO_2]=50\%$ at a total pressure of

4. Conclusions

 \checkmark Independently of the support, Ir/ γ -Al₂O₃, Ir/ACZ and Ir/CZ catalysts have a very stable time-on-stream DRM performance. However, supports with high oxygen storage capacity (i.e. ACZ and CZ) further promote CO₂ consumption, yielding CO-enriched syngas. \checkmark For all catalysts carbon deposition was low, although it is decreasing in the order Ir/ γ -Al₂O₃>Ir/ACZ>Ir/CZ that is consistent with a bifunctional mechanism involving participation of oxygen vacancies on the surface of the support in CO_2 activation ($CO_2 \rightarrow CO + O$) and carbon removal. \checkmark The lower apparent activation energy for CO₂ consumption rate, observed with CZ-containing catalysts (Ir/ACZ and Ir/CZ) suggests that CZ is a promising support for use in low temperature DRM.

Acknowledgements

This research has been co-financed by the European Union and Greek national funds through the operational program 'Regional Excellence' and the operational program Competitiveness, Entrepreneurship and Innovation, under the call "RESEARCH-CREATE-INNOVATE" (Project code: T2EΔK-00955)

EPANEK 2014-2020 PERATIONAL PROGRAMM IPETITIVENESS NTREPRENEURSHIP NNOVATION

